

ISH®VW INLINE CONNECTOR

Test Report

0	RS0942	June 14, 2023	Y. Nishimura	J. Mukunoki	J. Tateishi
Rev.	ECN	Date	Prepared by	Checked by	Approved by

ISH®VW INLINE CONNECTOR Test Report

1. Purpose

Evaluation test is conducted to verify performance of ISHVW CONNECTOR 8P. Test is in compliance with LV214.

2. Sample

1) MALE

MALE CONNECTOR Part No.: V0031-008B-201

MALE HOUSING: PBT

MALE RETAINER: GLASS FIELD PBT

MALE TERMINAL

MALE TERMINAL: Brass (Planting: Sn) Part No.: VT010-01

2) FEMALE

FEMALE HOUSING: PBT Part No.: V0116-91008-02
RETAINER: PBT Part No.: V0116-92008-01
FEMALE TERMINAL Part No.: VT009-01

BOX: Brass (Planting: Sn)

SPRING: Copper alloy (Planting: Sn)

*Contact force: 3.08N

Cable AESSX 0.3sq AESSX 0.5sq

3. Test Result

See List of Results, Tables 1 to 6, and Graphs 1 to 18.

4. Observation

As a result of the evaluation, the required performance of all items was satisfied.

Table 1. List of Results

PG No.		Item		Requirements	Unit.	Set	n			Data			Judge
	E0.1		:	No abnormalities				Ave.	Max.	Min.	S	Ave.±3s	
	E0.1	Visual Inspect			_	10	10	2.711		abnormali		2 411	Pass
	E0.2	Contact resistance	0.3sq	10mΩ Max	mΩ	5	40	2.711	3.13	2.33	0.233	3.411	Pass
		Contact resistance	0.5sq 0.3sq	10mΩ Max	mΩ	5	40	2.380	2.84	1.99	0.244 0.244	3.112	Pass Pass
PG0	E0.2.1	in contact area	0.5sq	10 m Ω Max 10 m Ω Max	mΩ mΩ	5	40	2.351 2.208	2.83 2.72	1.96 1.79	0.244	3.083	Pass
		Contact resistance in	0.3sq	10mΩ Max	mΩ	5	40	0.180	0.23	0.14	0.032	0.277	Pass
	E0.2.2	line connection area	0.5sq	10mΩ Max	mΩ	5	40	0.180	0.30	0.14	0.032	0.408	Pass
	E0.3	Insulation resistan		100MΩ Min	MΩ	10	10	0.204	1,000MΩ Min				
	E0.1	Visual Inspect	ion	No abnormalities	_	1	1			abnormali			Pass Pass
	E1.1 Dimensions			No abnormalities	_	1	1			abnormali			Pass
PG1	2111	Dimensions					-		1,0	401101111411			1 465
	E1.2	(of processed	1	No abnormalities	_	1	1		No	abnormali	ties		Pass
		components)											
	E0.1	Visual Inspect		No abnormalities	_	1	1		No	abnormali	ties		Pass
PG2	E2.1	Material test	of		_	1	1		Sa	e attachme	nt 1		_
		contact parts	.			1	1		360	e attachine	III 1		
	E0.1	Visual Inspect		No abnormalities	_	1	1		No	abnormali	ties		Pass
	E3.1	Material tes	t	_	_	1	1		See	e attachme	nt 2		_
PG3	23.1	of housing				_	•			- attacimite			
	E3.2	Markings on		No abnormalities	_	1	1		No	abnormali	ties		Pass
	_	the surface	-										
		Contact		Contact engagement	_	1	1		Car	e attachme	4.2		Dana
PG4	E4.1	engagement leng	vth.	length >1.00mm	_	1	1		Sec	e auacnme	nt 3		Pass
		engagement length		clearance >0mm	_	1	1		Sec	e attachme	nt 3		Pass
	E0.1	Visual Inspect	ion	No abnormalities	_	12	96			abnormali			Pass
	L0.1	Contact openii				12	70		110	aonoman	lics		1 433
	E5.1	dimension in th	-	_	mm	1	8	0.303	0.305	0.300	0.003	0.311	_
		unused condition	on										
	E5.1	Contact opening dime		_	mm	1	8	0.309	0.310	0.305	0.002	0.315	_
	E3.1	the DUTs inserted 5	times.		111111	1	0	0.309	0.510	0.303	0.002	0.515	
	E5.2	Normal contact fo			N	-	8	3.079	3.21	3.00	0.107	2.760	
		The DUTs inserted 5			N	-	8	2.822	3.00	2.80	0.073	2.603	
	B5.2	All DUTs of t		_	_	10	80			_			_
PG5		are inserted Aging in dry											
PGS	B5.3	Aging in dry heat , inserted		Tmax:125°C	_	10	80			_			_
	E0.1	Visual Inspect		No abnormalities	_	10	80		No	abnormali	ties		Pass
	LU.1	visuai ilispect	1H	—	mm	10	8	0.311	0.315	0.310	0.002	0.318	
			100H	_	mm	1	8	0.311	0.325	0.315	0.002	0.318	_
		Contact opening	200H	_	mm	1	8	0.321	0.325	0.315	0.004	0.332	_
		dimension	500H	_	mm	1	8	0.323	0.330	0.310	0.006	0.341	_
	D		1000H		mm	1	8	0.328	0.330	0.325	0.003	0.336	_
	E5.1	G	1H		mm	1	8	0.314	0.315	0.310	0.002	0.321	_
		Contact opening	100H	_	mm	1	8	0.323	0.325	0.320	0.003	0.331	_
		dimension	200H		mm	1	8	0.323	0.330	0.315	0.005	0.336	_
	(after insert/		500H	_	mm	1	8	0.326	0.330	0.325	0.002	0.331	_
		remove) 10	400077	_	mm	1 1	8	0.327	0.330	0.325	0.003	0.335	_

Table 2. List of Results

	•			1 aute 2									•
PG No.		Item	_	Requirements	Unit.	Set	n			Data			Judge
1 0 110.		120111	1	requirements		501		Ave.	Max.	Min.	S	Ave.±3s	5 dage
			1H	_	N	1	8	2.744	2.80	2.59	0.096	2.457	_
		Normal contact	100H	_	N	1	8	2.538	2.59	2.18	0.146	2.099	_
		force	200H	_	N	1	8	2.331	2.59	2.18	0.146	1.892	
			500H	_	N	1	8	2.254	2.80	1.97	0.245	1.518	
PG5	E5.2		1000H	_	N	1	8	2.047	2.18	1.97	0.106	1.728	_
		Normal contact	1H 100H		N	1	8	2.641	2.80	2.59	0.096	2.354	_
		force	200H		N N	1	8	2.383 2.280	2.59	2.18 1.97	0.221	1.720 1.706	
		(after insert/	500H			1		2.280	2.59				_
		remove)			N	1	8		2.18	1.97	0.073	1.932	
	E0.1	Visual Inspec	1000H	No abnormalities	N	5	5	2.099	2.18	1.97 abnormali	0.106	1.779	Dogg
	E0.1	visuai inspec	uon	No abhormances	<u> </u>	3	3		NO	abnorman	ues		Pass
	E6.1	Deflection of conta housing cav		_	_	1	1		See	e attachme	nt 4		_
PG6		Actuation Male	open	10~50N	N	5	5	15.50	16.5	14.3	0.79	13.13	Pass
	E6.4	forces of	close	50N Max.	N	5	5	37.23	37.8	36.5	0.53	38.83	Pass
	E0.4	secondary Female	open	10~50N	N	5	5	13.53	14.4	12.4	1.05	10.38	Pass
		lock	close	50N Max.	N	5	5	7.068	8.00	5.73	0.978	10.00	Pass
	E0.1	Visual Inspec		No abnormalities		5	5			abnormali			Pass
	E0.1	Visual Inspec	tion	No abnormalities	_	10	10		No	abnormali	ties		Pass
PG7	E7.2	Retention force of housing latch / lock Connector without contact I mm change 7.22 Retention force of housing latch /lock Connector without contact Max force		60N Min.	N	10	10	74.90	78.3	70.9	2.350	67.85	Pass
10,	L7.2			60N Min.	N	10	10	98.61	101.0	96.0	1.570	93.90	Pass
	E0.1	Visual Inspec	tion	No abnormalities	_	10	10		No	abnormali	ties		Pass
	E0.1	Visual Inspec		No abnormalities	_	3	3		No	abnormali	ties		Pass
	E0 1	Determination of the	Male	_	N	3	24	3.471	4.75	2.06	0.841	5.993	_
	E8.1	contact insertion forces	Female	_	N	3	24	2.393	2.90	1.93	0.280	3.234	_
	E8.2.1	Contact removal force from the	Male	25N Min.	N	3	24	42.63	44.4	41.0	0.823	40.16	Pass
		housing, primary lock only	Female	25N Min.	N	3	24	39.92	44.0	33.7	2.911	31.19	Pass
PG8			Male (Pos.1,5)	35N Min.	N	3	24	103.8	115.1	88.2	9.18	76.29	Pass (*1)
	E8.2.2	Contact removal force from the housing, secondary lock only	Male (other than Pos.1,5)	35N Min.	N	3	24	48.82	51.8	45.0	2.06	42.64	Pass (*1)
			Female	35N Min.	N	3	24	98.10	113.6	88.3	6.629	78.21	Pass
	E0.1	Visual Inspec	tion	No abnormalities	_	3	3		No	abnormali	ties		Pass
	E9.2	Max. possible insertion inclinat Direction X		_	_	1	1		See	e attachme			_
PG9	13.4	Max. possible insertion inclination Direction Y		_	_	1	1	See attachment 5					_
	E9.3	Examination of housing for scoop-proofing		_	_	1	1	See attachment 6					_

^(*1)Since Pos.1 and 5 have the different shapes of the secondary lock, contact removal force is difference.

Table 3. List of Results

				Table 3.	List	01 1	XCSI	1115					
PG No.		Item		Requirements	Unit.	Set	n		T	Data		T .	Judge
1 0 1 (0)	E0.1		4:	No abnormalities	OIII.			Ave.	Max.	Min.	S	Ave.±3s	
	E0.1	Visual Inspe				-	20	05.06		abnormali		07.10	Pass
		C	0.3sq Male	50N Min	N	-	10	95.96	100.1	91.2	2.92	87.18	Pass
PG10	E10.1	Conductor pull-out strength	0.3sq Female 0.5sq Male	50N Min	N	-	10	97.15	102.7	90.4	4.81	82.71	Pass
		Suengar	0.5sq Ivrale	50N Min 50N Min	N N	-	10	117.7 117.0	131.3 122.2	106 110	6.70 3.66	97.62	Pass Pass
	E0.1	Visual Inspe		No abnormalities		-	20	117.0		abnormali		106.1	Pass
	E0.1	Visual Inspe		No abnormalities		10	80			abnormali			Pass
	E5.1	Contact opening di			mm	-	10	0.310	0.310	0.310	0	0.310	
	L3.1	1 5		Insertion force must be 25% or less of the initial value	%	5	5	25% Max.			0.510	Pass	
DC11	F11 1	Insertion and r	emoval	Initial insertion force	N	5	5	21.68	22.0	21.3	0.32	20.71	_
PG11	E11.1	forces ,mating cycl	e frequency	After 20 cycles	N	5	5	17.54	18.1	17.0	0.39	16.37	_
				Initial removal force	N	5	5	19.17	19.9	18.7	0.56	17.48	_
			After 20 cycles	N	5	5	16.73	18.1	16.0	0.83	14.24	_	
	E5.1	Contact opening dir	nensions	-	mm	-	10	0.313	0.315	0.310	0.0026	0.320	_
	E0.1	Visual Inspe	ection	No abnormalities	_	10	80		No	abnormali	ties		Pass
	E0.1	Visual Inspe	ection	No abnormalities	_	-	6		No	abnormali	ties		Pass
	E12.1	Current excess temperatur	e 0.3sq	_	_	-	3		c	See Graph 1	1		
PG12	E12.1	without housing	0.5sq	_	_	-	3			see Graph	1.		
FUIZ	E12.2	Derating without housing	0.3sq 0.5sq		_	-	3		S	See Graph 2	2.		_
	E0.1	Visual Inspection		No abnormalities		Ε.	6		No	abnormali	ties		Pass
	E0.1	Visual Inspection		No abnormalities	_	6	6	No abnormalities					Pass
		Current excess	0.3sq	_	_	3	3						1 455
	E13.1	temperature with housing 0.5sq		_	_	3	3		S	See Graph 3	3.		_
PG13	E42.2	0.3sg		_	_	3	3						
	E13.2	Derating with housing	0.5sq	_	_	3	3					_	
	E0.1	Visual Inspe		No abnormalities	_	6	6	No abnormalities					Pass
	E0.1	Visual Inspection		No abnormalities	_	-	6	No abnormalities					Pass
PG14	E14.1	Thermal time constant 0.3sq		_	_	-	3	When 125°C is attained at					
FU14			0.5sq	_	_	-	3		2 times ra	ated current Se	e Graph5.		
	E0.1	Visual Inspe		No abnormalities	_	-	6			abnormali			Pass
	E0.1	Visual Inspe	ection	No abnormalities	_	8	8		No	abnormali	ties		Pass
	B15.1	The DUTs are ins disconnected 2	times !	_	_	8	8			_			_
	E5.1	Contact opening		_	mm	-	10	0.310	0.310	0.310	0	0.310	
		dimension	0.5sq	-	mm	-	10	0.310	0.310	0.310	0	0.310	
	E0.2	Contact resistanc	e 0.3sq	10mΩ Max	mΩ	4	32	2.416	2.74	2.12	0.160	2.898	Pass
			0.5sq	10mΩ Max	mΩ	4	32	2.887	3.23	2.48	0.179	3.423	Pass
	E12.2	Derating	0.3sq 0.5sq	_ _	_	4	4		S	See Graph (5.		_
PG15	E14.0	Continuous coresistance du B15.2 with test	ontact ring	-	_	8	8		S	See Graph	7.		_
	B15.2	Temperature endurance test/ c	current	_	_	8	8			_			_
	B15.3	Humid heat,	cyclic	_	_	8	8			_			_
	E14.0	Contact resistance cont B15.2 with test	inuous during	-	_	8	8		S	See Graph 8	3.		_
	B15.2	Temperature cycle endurance test/ current cycle endurance test		_	_	8	8	_					_

Table 4. List of Results

	I			ı		ı	$\overline{}$			D /			
PG No.		Item		Requirements	Unit.	Set	n	A	M	Data	l _	A 12	Judge
			0.222	30mΩ Max	0	1	32	Ave.	Max.	Min.	S 1 1 4 2	Ave.±3s	D
	E0.2	Contact resistance	0.3sq 0.5sq		mΩ	4	_	3.897	8.79	2.53	1.143	7.327	Pass
			0.3sq 0.3sq	30mΩ Max —	mΩ —	4	32	6.122	12.5	3.77	2.537	13.73	Pass
PG15	E12.2	Derating	0.5sq			4	4		S	See Graph (6.		
1013		Contact opening	0.3sq	_	mm	-	10	0.320	0.320 0.320 0.320 0 0.320			0.320	_
	E5.1	dimension	0.5sq	_	mm	-	10	0.322 0.325 0.320 0.0024 0.329				_	
	E0.1	Visual Inspect		No abnormalities	_	8	8			abnormali			Pass
	E0.1	Visual Inspect	ion	No abnormalities	_	-	3		No	abnormali	ties		Pass
PG16	E16.0	Contact resistance continuous monitoring B16.1,recording, and s	during	Verify no. of cycles to attain 300mΩ	_	-	3		S	See Graph 9	9.		_
	B16.1	 			_								
	E0.1	Visual Inspect		No abnormalities		10	10			abnormali		1	Pass
	E0.2	Contact resistance	0.3sq	10mΩ Max	mΩ	5	40	2.484	3.11	2.16	0.192	3.059	Pass
	20.2		0.5sq	10mΩ Max	mΩ	5	40	3.066	3.41	2.81	0.125	3.442	Pass
		G				10	10		Se	ee Graph 1	0.		
	E14.0	Contact resistance conduring B17.2 with test cu	No microcuts of 7Ω Min for 1,000ns Min	_	10	10		No	abnormali	ties		Pass	
	B17.2	Dynamic load, broad-band random vibration		Severity: Body unsealed	_	10	10	_					-
	E0.1	Visual Inspect	ion	No abnormalities	_	10	10		No	abnormali	ties		Pass
PG17	E14.0	Contact resistance continuous during B17.3 with test current		No microcuts of 7Ω Min for 1,000ns Min	_	10	10			ee Graph 1 abnormali			Pass
	B17.3	Endurance shock	Severity: Body unsealed	_	10	10	_					_	
	E0.1	Visual Inspect	ion	No abnormalities	_	10	10		No	abnormali	ties		Pass
	E0.2	Contact resistance	0.3sq	30mΩ Max	mΩ	5	40	3.629	4.46	2.84	0.404	4.841	Pass
	E0.2	Contact resistance	0.5sq	30mΩ Max	mΩ	5	40	5.737	7.34	4.35	0.663	7.728	Pass
	B17.4	Resonance frequency housing parts including of and lines under Sinusoidal vibration	contacts	_	_	_	_		Se	ee Graph 1	2.		_
	E0.1	Visual Inspect	ion	No abnormalities	_	10	10		No	abnormali	ties		Pass
	E0.2	Contact resistance	0.3sq	10mΩ Max	mΩ	5	40	2.692	3.13	2.15	0.229	3.378	Pass
		Comact resistance	0.5sq	10mΩ Max	mΩ	5	40	3.202	3.69	2.71	0.284	4.055	Pass
PG18A	B18.2	Salt spray, cycl		_		10	10					1 -	
	E0.2	Contact resistance	0.3sq	30mΩ Max	mΩ	5	40	2.575	3.33	2.03	0.315	3.521	Pass
		₹7:1 ₹	0.5sq	30mΩ Max No abnormalities	mΩ	5	40	3.176	3.67	2.73	0.279	4.013	Pass
	E0.1 E0.1	Visual Inspect Visual Inspect		No abnormalities No abnormalities		10 10	10			abnormali abnormali			Pass Pass
		visuai inspect	0.3sq	10mΩ Max	mΩ	5	10 40	2.719	3.13	2.33	0.240	3.437	Pass
	E0.2	Contact resistance	0.5sq 0.5sq	10mΩ Max	mΩ	5	40	3.152	3.71	2.33	0.240	4.031	Pass
PG18C	B18.3	Salt spray, cycl		- I UIISZ IVIAX		10	10	3.134	3./1	<u> </u>	0.233	7.031	r ass
10100		Contact resistance	0.3sq	30mΩ Max	mΩ	5	40	2.635	3.25	2.15	0.270	3.446	Pass
	E0.2		0.5sq	30mΩ Max	mΩ	5	40	3.196	3.70	2.73	0.304	4.108	Pass
	E0.1	Visual Inspect	ion	No abnormalities	_	10	10		No	abnormali	ties		Pass

Table 5. List of Results

	Data									1			
PG No.		Item		Requirements	Unit.	Set	n		1.6		<u> </u>	A : 2	Judge
	E0.1	77 17 A		·				Ave.	Max.	Min.	S	Ave.±3s	
	E0.1	Visual Inspect Contact resistance		No abnormalities	_	24	24	2 001		abnormali		2.676	Pass
		Group 1	0.3sq 0.5sq	10mΩ Max	mΩ mΩ	4	32	2.881 3.172	3.40	2.43	0.265	3.676	Pass Pass
		Contact resistance	0.3sq 0.3sq	10mΩ Max 10mΩ Max	mΩ	4	32	2.896	3.68	2.71	0.313	4.112 3.775	Pass
	E0.2	Group 2	0.5sq	10mΩ Max	mΩ	4	32	3.131	3.71	2.43	0.233	4.070	Pass
		Contact resistance	0.3sq	10mΩ Max	mΩ	4	32	2.935	3.39	2.46	0.267	3.735	Pass
		Group 3	0.5sq	10mΩ Max	mΩ	4	32	2.937	3.36	2.63	0.164	3.429	Pass
		Inserting and										•	
	B19.0	removing group		_	_	24	24			_			_
		according to stand	dard										
		Contact resistance	0.3sq	30mΩ Max	mΩ	4	32	2.854	3.35	2.46	0.255	3.618	Pass
		Group 1	0.5sq	30mΩ Max	mΩ	4	32	2.933	3.28	2.68	0.131	3.325	Pass
	E0.2	Contact resistance	0.3sq	30mΩ Max	mΩ	4	32	2.807	3.39	2.42	0.305	3.724	Pass
		Group 2	0.5sq	30mΩ Max	mΩ	4	32	2.911	3.17	2.62	0.115	3.257	Pass
		Contact resistance Group 3	0.3sq	30mΩ Max	mΩ	4	32	2.924	3.41	2.45	0.295	3.810	Pass
		Стопр 3	0.5sq	30mΩ Max	mΩ	4	32	2.980	3.29	2.72	0.163	3.470	Pass
	E14.0	Contact resistance continuous during B19.1 with test current		_	_	16	16		S	ee Graph 1	3.		_
	B19.1	Temperature sh	ock	Tmax:125°C	_	24	24						_
	E14.0	Contact resistance continuous during		_	_	16	16	See Graph 14.					_
PG19	B19.2	Temperature cycle		Tmax:125°C	_	24	24						_
PG19	E14.0	Contact resistance continuous during		_	_	16	16	See Graph 15.				_	
	B19.3	Aging in dry h	eat	Tmax:125°C	_	24	24	_					_
	E0.1	Visual Inspect		No abnormalities	_	24	24	No abnormalities					Pass
	B19.4	Industrial clim		_	_	24	24			_			_
	E14.0	Contact resistance continuous during B19.5 with test current		-	_	16	16		S	ee Graph 1	6.		_
	B19.5	Humid heat, cy	clic	_	_	24	24						_
	E0.1	Visual Inspect		No abnormalities	<u> </u>	24	24		No	abnormali	ties		Pass
	E14.0	Contact resistance continu B19.6 with test cur	ious during	-	_	16	16			ee Graph 1			_
	B19.6	Dynamic loa	ıd	_	_	16	16						_
	E14.0	Contact resistance continuous during B19.7 with test current		-	_	16			S	ee Graph 1	8.		_
	B19.7	Mech. Shocks		_	_	24	24			_			_
	B19.8	One-time disconnection and insertion		-	_	24	24			_			_

Table 6. List of Results

							1				ъ.			
PG No.		Item			Requirements	Unit.	Set	n			Data	1		Judge
		Contact resistance 0.3sq		0.2	20.014		1	22	Ave.	Max.	Min.	S 0.622	Ave.±3s	D
					30mΩ Max	mΩ	4	32	4.065	5.03	3.15	0.633	5.963	Pass
		Group		0.5sq	30mΩ Max	mΩ	4	32	3.568	4.79	2.97	0.400	4.766	Pass
PG19	E0.2	Contact res Group		0.3sq	30mΩ Max	mΩ	4	32	5.933	10.09	4.17	1.698	11.03	Pass Pass
1019		Contact res		0.5sq 0.3sq	30mΩ Max	mΩ	4	32 32	9.549	15.84	4.89	3.529	20.13	Pass
		Group		0.5sq	30mΩ Max 30mΩ Max	mΩ mΩ	4	32	6.543 8.865	10.11 14.90	4.47 5.55	1.521 2.725	11.11 17.04	Pass
	E0.1	1	Inspect		No abnormalities	11122	15	15	0.003		abnormali		17.04	Pass
	E0.1		Inspect		No abnormalities	_	5	5			abnormali			Pass
	E0.3		ion resistan		100MΩ Min	ΜΩ	5	5			000MΩ M			Pass
	B20.1		in dry h		Tmax:125°C		5	5		1,	—			—
	B20.2		heat, const		——————————————————————————————————————	_	5	5						_
	E0.3		ion resistan		100MΩ Min	ΜΩ	5	5		1.	000MΩ M	lin		Pass
	E0.1	Visual	Inspect	ion	No abnormalities	_	5	5			abnormali			Pass
DC20			emperat											
PG20	B20.3		aging		_	_	5	5			_			_
	D20.4		noval an	d	Must be able to		_	_		A 1 1	/			
	B20.4	insertio	on at -20	$^{\circ}\mathbb{C}$	insert/remove	_	5	5		Able	to insert/re	emove		_
	E0.1	Visual	Inspect	ion	No abnormalities	_	5	5		No	abnormali	ties		Pass
	B20.5	Aging	in dry h	eat	_	_	5	5						_
	B6.1		op test		_	_	5	5			_			_
	E0.1		Inspect		No abnormalities	_	5	5			abnormali			Pass
	E0.1	Visual	Inspect		No abnormalities	_	20	20			abnormali		1	Pass
	E0.2 Contact resist		sistance	0.3sq	10mΩ Max	mΩ	5	40	2.453	2.77	2.22	0.134	2.855	Pass
		_		0.5sq	10mΩ Max	mΩ	5	40	2.934	3.16	2.75	0.120	3.293	Pass
	B21.1	Long-term aging in dry heat (all parts)			Tmax:125°C	_	20	20			_			_
	E0.2	Contact res	sistance	0.3sq 0.5sq	30mΩ Max	mΩ	5	40 40	3.270	5.12 4.01	2.57 3.13	0.531	4.863	Pass Pass
		Func	tional tes		30mΩ Max	mΩ	3	40	3.500	4.01	3.13	0.212	4.134	Pass
	E21.1		oth group		_	_	20	20	_					_
PG21	B6.1		op test	P -	No abnormalities	_	10	10		No	abnormali	ties		Pass
		2.	ор сос	Male	25) 1 1 5	3.7			111 1				00.10	Pass
				(Pos.1,5)	35N Min.	N	3	24	111.1	116	105	3.960	99.19	(*1)
		Contact pu	ıll-out	Male										
	E8.2	forces o	fall	(other	35N Min.	N	3	24	58.67	63.2	51.2	3.400	48.47	Pass
	E0.2	contac	ets	than Pos.1,5)	33N MIII.	1N	3	24	36.07	03.2	31.2	3.400	40.47	(*1)
		of grou	p 2	F08.1,3)										
				Female	35N Min.	N	3	24	98.28	112.5	81.8	8.890	71.61	Pass
	70.4	***		<u> </u>		- 1			70.20				, 1.01	
	E0.1		Inspect		No abnormalities	_	10	10			abnormali			Pass
	E0.1		Inspect		No abnormalities	-	25	25			abnormali			Pass
	E0.3		ion resistan		100MΩ Min	ΜΩ	5 25	5 25		1,	<u>000ΜΩ Μ</u> —	ıın		Pass
	B22.1	Resistai	ce to ag	ning agent	100MΩ Min	MO				1	00MΩ Mi	n		Pass Pass
				ating oil	100MΩ Min	MΩ MΩ	5	5			0000121011 $000M\Omega M$			Pass
PG22A	E0.3	Insulation		er fluid	100MΩ Min	MΩ	5	5			$00M\Omega$ Mi			Pass
	20.5	resistance		opanol	100MΩ Min	ΜΩ	5	5			000MΩ M			Pass
			_	ease	100MΩ Min	ΜΩ	5	5			$000M\Omega M$			Pass
	E0.1	Visual	Inspect		No abnormalities		25	25			abnormali			Pass
	E1.1		nensions		No abnormalities	_	5	5			abnormali			Pass
	E0.1		Inspect		No abnormalities	_	5	5			abnormali			Pass
Desc.	B28.1		Aging		_	_	5	5		110	_			_
PG28	E28.1	Locking noise		70dB Min	dB	5	5	71.02	71.3	70.8	0.23	70.34	Pass	
	E0.1		Inspect		No abnormalities		5	5			abnormali			Pass
		20.1 Visual hispection												

Graph 1. PG12 E12.1 Current excess temperature (Single pin)

Graph 2. PG12 E12.2 Derating Curve (Single pin)

Graph 3. PG13 E13.1 Current excess temperature(All pins)

Graph 4. PG13 E13.2 Derating Curve(All pins)

Graph 6. PG15 E13.2 Derating Curve(All pins)

Graph 7. PG15 E14.0 Resistance Monitor

Graph 8. PG15 E14.0 Resistance Monitor

Graph 9.PG16 E16.0 Resistance Monitor

Graph 10.PG17 E14.0(B17.1) Resistance Monitor

Graph 11. PG17 E14.0(B17.1) Resistance Monitor

Graph 12. PG17 B17.4 Resistance frequency of the contact assembly

Graph 13. PG19 B19.1 Resistance Monitor

Graph 15.PG19 B19.3 Resistance Monitor

Graph 17.PG19 B19.6 Resistance Monitor

Graph 14. PG19 B19.2 Resistance Monitor

Graph 16.PG19 B19.5 Resistance Monitor

Graph 18.PG19 B19.7 Resistance Monitor

5. Test Methods and Performances

Table 7. Mechanical Performances

	Test item
PG0	Inspection of as- received condition
PG1	Dimensions
PG2	Material and surface analysis, contacts
PG3	Material and surface analysis, housing
PG4	Contact engagement length
PG5	Mechanical and thermal relaxation behavior
PG6	Interaction between contact and housing
PG7	Handling and functional reliability of the housing
PG8	Insertion and retention forces of the contact parts in the housing
PG9	Insertion inclination/misuse safe(scoop-proofing)
PG10	Contacts:conductor pull-out strength
PG11	Contacts: Insertion and removal forces, mating cycle frequency
PG12	Current heating, derating
PG13	Housing influence on the derating
PG14	Thermal time constant (current excess temperature at n times rated current)
PG15	Electrical stress test
PG16	Friction corrosion
PG17	Dynamic load
PG18A	Coastal climate load
PG18C	Deicing salt load
PG19	Environmental simulation
PG20	Climate load of the housing
PG21	Long-term temperature aging
PG22A	Chemical resistance
PG28	Locking noise

5-1 Properties tests

	f
	Insulation resistance
	A. Test method · · · Measure insulation resistance between all adjacent contacts.
	Test Voltage=500+50V, test time=60±5s
	B. requirement · · · 100MΩ Min.
E0.3	Contacts Wiring of the contacts
	Fig.2 Insulation resistance measurement setup
	Dimensions
E1.1	A. Test method • • • Measure dimensions using caliper, micrometer, projector.
	B. requirement • • • Satisfy drawing dimension.
	Dimensions (of processed components)
	A. Test method • • • Measure dimensions of the crimping part using caliper,
E1.2	micrometer, projector.
	B. requirement • • • Satisfy drawing dimension.
	Material test, contact parts
	A. Test method • • • Material properties indication for male terminal, female terminal and peg.
E2.1	Material: material certificate, conductivity, tensile strength,
	modulus of elasticity.
	B. requirement • • • Record must be maintained. RoHS, ELV directives must be observed.
	Material test, housing
	A. Test method • • • Material properties indication for male housing, female housing.
E3.1	①Material: Material certificate
	②Measurement of burrs in functional areas
	B. requirement • • • Record must be maintained. No burrs detrimental to function.
	Markings on the surface
	A. Test method · · · Check for any dirt or markings on assembled parts, male housing, female housing.
E3.2	B. requirement · · · Must satisfy appearance inspection of the inspection standard.
	No burrs on functional area.
	Contact engagement length
	A. Test method···Contact engagement length and required clearance must be calculated based on worst
	case
	dimensions. B. requirement ••• Contact engagement length:>1.00mm (for all contact points)
	Contact engagement length Male terminal
	Female terminal
E4.1	
	Fig. 3 Contact engagement length
	=

Determination of the contact insertion forces

A. Test method · · · Determine the peak force required to insert terminal into housing.

E8.1

Fig.10 Measuring method

Contact removal force from the housing

A. Test method • • • Measure the force required to remove the terminal from the housing, by pulling terminal into the opposite direction of insertion.

B. requirement • • • primary lock : 25N Min.(E8.2.1), secondary lock : 35N Min.(E8.2.2)

E8.2

Fig.11 Measuring method

Max. possible insertion inclination

A. Test method · · · Verify mated state under maximum possible insertion inclination.

E9.2 (X and Y directions. Z is the insertion direction, confirmed by the CAD)

B. requirement • • • Must be designed so connector is guided into housing without female terminal settling or male terminal buckling under the worst-case dimensions.

Examination of housing for scoop-proofing

E9.3 A. Test method · · · Verify scoop-proofing. (Confirmed by the CAD)

B. requirement · · · · Electrical connection is established only when correctly mated.

No interference between male terminal and female housing.

Conductor pull-out strength

A. Test method • • • Measure the force required to pull out the conductor from the crimp.

Insulation barrel is not in function.

B. requirement · · · 50N Min. (Conductor: 0.3sq (AWG22), 0.5sq(AWG20))

E10.1

Fig.12 Measuring method (0.3sq(AWG22))

Contacts: Insertion and removal forces, mating cycle frequency

A. Test method · · · Depending on the plating type, repeat insertion/removal as follows.

No addition of lubricant.

Sn:20 times

B. requirement • • • The insertion force change at the time of contact with the terminal must be up to 25% compared to the initial value.

E11.1

Fig.13 Measuring method (Insertion force)

Fig.14 Measuring method (Removal force)

Current excess temperature, Derating curve (without housing)

A. Test method

Different current is applied and left for 1 h to stabilize the terminal temperature.

(temperature change of terminal must be $\pm 2^{\circ}$ Cmin. when measured for 3 times at an interval of 5 minutes)

Measure the ambient temperature at a distance of 50mm min. horizontally from the sample.

Record the ambient temperature, surface temperature of the terminal, and current applied.

Create base curve and 80% derating curve from the temperature increase curve.

E12.1 B. requirement • • • Create temperature increase curve. [E 12.1], Create derating curve. [E 12.2] E12.2

Fig.15 Temperature monitor location

Current excess temperature, Derating curve (with housing)

A. Test method

Different current is applied to DC circuit with all terminal and left for 1 h to stabilize the terminal temperature.

(temperature change of terminal must be ±2°Cmin. when measured for 3 times at an interval of 5 minutes)

Measure the ambient temperature at a distance of 50mm min. horizontally from the sample.

Record the ambient temperature, surface temperature of the terminal, and current applied.

Create base curve and 80% derating curve from the temperature increase curve.

E13.1 E13.2 B. requirement · · · Create temperature increase curve. [E 13.1], Create derating curve. [E 13.2]

Fig.16 Temperature monitor position

Continuous contact resistance during the test with test current

A. Test method · · · Monitor voltage drop during the test.

E14.0 | Continuous contact resistance during the test with test current (100 mA)

Frequency of measurement: every 1 minute

B. requirement • • • Record must be maintained.

Thermal time constant

A. Test method

Apply current value of 1x, 2x, 3x, 4x, 5x the rated current to single terminal.

(temperature change of terminal must be $\pm 2^{\circ}$ Cmin. when measured for 3 times at an interval of 5 minutes) Leave the terminal for 1 hour to stabilize temperature and measure the increase.

Temperature increase tolerance: 125°C

B. requirement • • • Create temperature increase graph.

Contact resistance, continuous monitoring during B16.1, recording, and storing

A. Test method • • • Monitor voltage drop during the test.

Continuous contact resistance during B16.1 with test current

Frequency: 4Hz

B. requirement · · · Record must be maintained.

E16.0

Fig.17 Measuring method

E21.1 Functional test with both groups

A. Test method · · · Insert and remove 5 times.

Locking noise

A. Test method

Measure the locking noise [dB] when female connector is inserted into male connector.

Distance to microphone: 600±50mm. Distance from the floor: 1m

B. requirement · · · Must satisfy 70dB(A) min.

Signal-to-noise ratio between the locking noise and ambient noise must be at least 7dB(A).

E28.1

Fig.18 Schematic of the measurement setup "volume measurement"

5-2 Loads

A. Test method • • Insert male terminal into female terminal. (Group 2 to 5)											
	A. Test method · · · Insert male terminal into female terminal. (Group 2 to 5)										
Aging in dry heat, inserted											
A. Test method Age mated samples in chamber at 125°C. Remove the sample at each specified timing (1h, 100h, 200h, 500h, and 1000h). (Group 2 to 5) B5.3											
Fig. 19 Temperature cham	ber (PL-2KPH / ESPEC)										
B15.1 Insertion and removal before the test (2 times)											
A. Test method ••• Insert and remove the connector 2 times.											
Temperature cycle endurance test/current cycle endurance test											
A. Test method											
Applied current "In" is read from the derating curve at 80 °C ambient temper	erature.										
The test current is constant.											
1 cycle (6h) as shown in Fig. 20. Repeat 60 cycles.	1 cycle (6h) as shown in Fig. 20. Repeat 60 cycles.										
1 cycle											
To*C 1,5 h 2,5 h 1,5 h 0,5 h Fig. 20 Temperature cycle											
Humid heat, cycle											
A. Test method ••• Temperature: 25~55°C. Relative humidity: 95%RH.											
1 cycle (24h) as shown in Fig. 21. Repeat 21 cycles.											
End of temperature rise											
15min 15min 15min 15min 15min											
B15.3 Maximum temperature +2K Maximum t											

Friction load

A. Test method

Insert male terminal into female terminal. Distance of fretting motion: 50µm,

Cycle time: 1Hz, No. of cycles: 10000 cycles min. Monitor dry circuit resistance

during fretting motion MAX.100mV, 10mA

B. requirement

Create a graph of resistance vs no. of cycles.

Record cycles at dry circuit resistance 300mΩ.

Dynamic load, broad-band random vibration / Endurance shock test

A. Test method · · · Vibration: see Table 7, Sweep speed:1 oct./min

Table.7 Vibration and shock (Body, non-sealed)

10	idie./ Vidiali	(Body, noir-scard)		
TC(temp. cycle)		bration with	Sine wave with TC	No. of shocks
		ic		SHOCKS
	8 h per axis	RMS value	No sine wave	
0 min / 20 °C	of accelerat	tion 19.7m/s ²		A=30 G T=6 ms
60 min / - 40 °C 150 min / - 40 °C	Hz	$(m/s^2)^2/Hz$		Sinusoidal
300 min / 105 °C	10	(m/s)/Hz		half-wave No. of
420 min / 105 °C	55	3.25		shocks:
480 min / 20 °C	180	0.125		6000
	300 360	0.125 0.07		
	1000	0.07		

B17.2 B17.3

Fig.22 Mounting on vibrator table, coupling (F-26000BDH/LA26AW / EMIC)

Resonance frequency of the contact assembly

A. Test method ••• Affix vibration transducer to the housing to determine resonance frequency, based on the conditions below:

Dynamic load, sinusoidal, Sweep speed: a = 10 m/s2, f = 5 Hz - 2000 Hz - 5 Hz

B. requirement ••• Create a graph of vibration response of the housing.

B17.4

Fig.23 Resonant frequency measurement

	Coastal climate load										
R18 2	A. Test method • •	• Salt spray. c	velie								
D10.2	Severity 3		,								
	Coastal climate load										
	A. Test method • •	• Salt enray e	velie								
B18.3	Severity 3	San spray, c	yene								
D10 .5	Salt mixture (Nordic country salt): 3% salt solution, of which 95% is										
	NaCl, 2,5% is MgCl2, and 2,5% is CaCl2										
	Inserting and removing										
	A. Test method • •					ling to Table 8.					
	Table.8 Description of the 3 groups										
		No. of	Group 1	Group 2	Group 3						
B19.0		contacts	10min.	10min.	10min.						
D 17.0		No. of	1	1	C 10						
		insertion	1	1	Sn:10						
		Inserted/Not	Not		T . 1						
		inserted	inserted	Inserted	Inserted						
	Temperature shock										
	A. Test method										
	-40°C~125°C.1 cyc	le=15 min. Re	peat 144 cy	cles.							
	-40°C~125°C.1 cycle=15 min. Repeat 144 cycles. Acclimatization period: 10 sec. max.(All groups)										
		Accommunication period. To see. max.(Am groups)									
B19.1											
B17.1	National Property of the Control of										
	Fig.24 Temperature shock chamber (TSE-11 / ESPEC)										
	Temperature cycle										
B19.2	A.Test method · · ·	−40°C~125°C.	1 cycle= 10 l	(with 3 h. ti	me for temp	erature cycle: 2 h max.)					
	Repeat 20 cycles. (All g	groups)									
B19.3	Aging in dry heat				500						
2313.5	A. Test method · · · Industrial climate (mult			125°C. (All	groups)						
	A.Test method · · · A			ner Temnera	iture 25°C. R	telative humidity: 75%					
	Flow rate: 1m3/h. SO2					989					
	1.0 1/ 1.00	. орр.н, т	. отогруши	1102 1 012)	pin, e.e.	5.5.7 PP.					
				72							
			4								
B19.4											
		Fig.2	25 Gas chambo	т (GH-180-V	I/M / Yamasa	ki)					

	Humid heat, cyclic				
B19.5	A. Test method · · · Temperature: 25~55°C. Relative humidity: 95%RH.				
	1 cycle (24h) as shown in Fig. 21. Repeat 10 cycles. (All groups)				
	Dynamic load, Broad-band random vibration				
B19.6	A. Test method · · · RMS value of acceleration: 13.9m/s2. 6 h per axis according to Table 9. (Groups 2 and 3)				
	Table.9 Broad-band random vibration				
		Hz	(m/s ²) ² /Hz		
		0	5		
		55	1,625		
		180	0,0625		
		300	0,0625		
		360	0,035		
		1 000	0,035		
Mech. Shocks (single shocks)					
B19.7	A. Test method				
	Acceleration: 30G. Individual shock duration: 6ms. Sinusoidal half-wave. 50 shocks. (All groups)				
D10.0	One-time disconnection and insertion				
B19.8	A. Test method • • • Insert and remove once. (All groups)				
B20.1	Aging in dry heat A. Test method • • • Age for 120 h in the chamber at 125°C				
	Humid beat constant				
B20.2	A. Test method···Age for 10 days in the chamber at 40°C, RH 95%.				
B20.3	Low-temperature aging				
	A. Test method ••• Age for 48 h in the chamber at -40°C. Removal and insertion at -20°C				
B20.4	A. Test method ••• Insert and remove once at -20°C.				
B20.5	Aging in dry heat				
	A. Test method···Age for 48 h in the chamber at 125°C. Long-term aging in dry heat (all parts)				
200					
	A. Test method ••• Age for 1000 h in the chamber at 125°C. (All groups)				
	Leave for 48 h at room temperature.				
	Resistance to agents A. Test method				
	Test samples must be exposed to the fluids (for chemicals and method, see Appendix E) and aged for 48h				
	at the required aging temperature.				
	After the test is complete, the test samples must be rinsed thoroughly with water and dried.				
B22.1					
	Language Control of the Control of t				
Fig.26 Chemical agent					
B28.1	Aging				
D28.1	A. Test method···Leave for 24 h at room temperature.				