FPL II Connector

Part No. Plug:20437-0**T-*1 Receptacle:20439-0**E-**

Product Specification

Qualification Test Report No. TR-07048

11	S23312	September 27, 2023	H.Uchida	M.Nakamura	T.Masunaga
10	S22141	March 31,2022	T.Ono	T.Masunaga	H.lkari
9	S21476	October 5,2021	T.Onishi	T.Masunaga	H.Ikari
8	S17122	February 20,2016	K.T		H.I
Rev.	ECN	Date	Prepared by	Checked by	Approved by

1．Scope

This product specification defines the test conditions and the performances of the FPL II Connector，a wire－to－board connector of 0.5 mm contact pitch．

2．Product Name and Parts No．

2．1 Product Name

FPL II Connector

2．2 Parts No．

Plug：20437－0＊＊T－＊1
Receptacle：20439－0＊＊E－＊＊

3．Rating

3．1 Applicable Cable
Micro－Coaxial Cable \cdots ．．AWG\＃ $40,38,36,34,32$ ］
Discrete Wire $\cdot \cdots$ AWG\＃ $36,34,32$ 】
Twinax Cable …AWG\＃【40】

3．2 Operating Conditions

Amperage： 0.3 A AC／DC［AWG\＃40］（Per Contact Pin／Up to 50 Contacts）
$0.6 \mathrm{~A} A C / D C$［AWG\＃38］（Per Contact Pin／Up to 6 Contacts）
0．8A AC／DC［AWG\＃36］（Per Contact Pin／Up to 4 Contacts）
1．0A AC／DC［AWG\＃34，32］（Per Contact Pin／Up to 7 Contacts）
Voltage：100V AC（Per Contact Pin）
Operating Temperature： 233 to $358 \mathrm{~K}\left(-40{ }^{\circ} \mathrm{C}\right.$ to $85{ }^{\circ} \mathrm{C}$ ）（Containing Temperature Rise by Current）
Operating Humidity： 85% max

3．3 Storage Conditions

Storage Temperature： 248 to $333 \mathrm{~K}\left(-25{ }^{\circ} \mathrm{C}\right.$ to $60{ }^{\circ} \mathrm{C}$ ）
Storage Humidity： 85% max．（Non－Condensing）

4．Test and Performance

Test Condition
Unless otherwise specified，all tests and measurements shall be performed under the following conditions in accordance with MIL－STD－202．

Temperature： 288 K to $308 \mathrm{~K}\left(15{ }^{\circ} \mathrm{C}\right.$ to $35{ }^{\circ} \mathrm{C}$ ）
Pressure： 866 hPa to $1066 \mathrm{hPa}(650 \mathrm{mmHg}$ to 800 mmHg ）
Relative Humidity： 45 to 75% R．H．

4.1. Electrical Performance

1. Contact Resistance	
Reference Standard:	MIL-STD-202-307
Test Conditions:	Solder the receptacle connector to the test board and mate the plug connector together, then apply 20 mV MAX. DC open circuit voltage and 10 mA MAX. DC closed circuit current. Measure the contact resistance of signal and ground at the section shown in Fig. 1 by the four terminal methods. Fig. 1
Pass Criteria:	```Signal Contact Initial: \(145 \mathrm{~m} \Omega\) MAX.(AWG\#32), \(185 \mathrm{~m} \Omega\) MAX.(AWG\#34) \(210 \mathrm{~m} \Omega\) MAX.(AWG\#36), \(575 \mathrm{~m} \Omega\) MAX.(AWG\#40) After Testing: \(\triangle \mathrm{R} 40 \mathrm{~m} \Omega \mathrm{MAX}\). Initial value contains the following conductor resistance of a cable 100 mm . \(90 \mathrm{~m} \Omega \mathrm{MAX}\).(AWG\#32), \(130 \mathrm{~m} \Omega\) MAX.(AWG\#34) \(155 \mathrm{~m} \Omega\) MAX.(AWG\#36), \(575 \mathrm{~m} \Omega\) MAX.(AWG\#40) Ground Initial: \(50 \mathrm{~m} \Omega \mathrm{MAX}\). After Testing: \(\triangle \mathrm{R} 40 \mathrm{~m} \Omega \mathrm{MAX}\).```

2. Insulation Resistance	
Reference Standard:	MIL-STD-202-302
Test Conditions:	Mate the plug and receptacle connector together, and then apply DC 500 V between the neighboring contacts and between contacts and shell.
Pass Criteria:	Initial: $1000 \mathrm{M} \Omega$ MIN. \quad After Testing:500M 2 MIN.

3. Dielectric Withstanding Voltage	
Reference Standard:	MIL-STD-202-301
Test Conditions:	Mate the receptacle and plug connector together, then apply AC 250V(rms) between the neighboring contacts and between contacts and shell for a minute.
Pass Criteria:	No abnormalities such as creeping discharge, flashover, insulator breakdown occur.

4. Temperature Rising	
Reference Standard:	-
Test Conditions:	Mate the plug and receptacle connector together, and apply rating current per contact pin. Measure delta T over ambient.
Pass Criteria:	Over Ambient: $\triangle T 30^{\circ} \mathrm{C}$ MAX.
Confidential C	I-PEX

5. Differential Impedance	
Reference Standard:	-
Test Conditions:	Mate the plug and receptacle connector together, measuring differential impedance.
	Rise time for impedance measurement: 260 ps..
Pass Criteria:	Differential Impedance: $100 \pm 15 \Omega$

4.2. Mechanical Performance

1. Mating Force and Un-Mating Force		
Reference Standard:	-	
Test Conditions:	Solder the receptacle connector to the test board, then place the board and plug on push-on/pull-off machine. Repeat mating/un-mating 30 cycles at a speed $25 \pm 3 \mathrm{~mm} / \mathrm{min}$. along the mating axis. Measure the mating and un-mating force at the initial and after 30 cycles.	
Pass Criteria:	Mating Force 30 P Initial / 30 cycles: 50.0 N MAX. 40 P Initial / 30 cycles: 60.0 N MAX. 50 P Initial / 30 cycles: 70.0 N MAX.	Un-Mating Force 30 P Initial / 30 cycles: 5.0 N MIN . 40 P Initial / 30 cycles: 6.0 N MIN . 50 P Initial / 30 cycles: 7.0 N MIN .

2. Durability	
Reference Standard:	-
Test Conditions:	Solder the receptacle connector to the test board, then place the board and plug on the push-on/pull-off machine, and repeat mating and un-mating 30 cycles at a speed $25 \pm 3 \mathrm{~mm} /$ min. along the mating axis.
Pass Criteria:	Contact Resistance: Shall meet 4.1.1

3. Contact Retention Force
Reference Standard: -

Test Conditions:	Place the connector on the push-on/pull-off machine, then apply force to the contact from opposite direction of the contact insertion at a speed of $25 \pm 3 \mathrm{~mm} /$ min. Measure the force when the contact dislodges from the connector.
Pass Criteria:	Plug Contact Retention Force: 1.0 N MIN. Receptacle Contact Retention Force: 0.54 N MIN.

4. Cable Retention Force	
Reference Standard:	-
Test Conditions:	Place the plug connector on the push-on/pull-off machine and pull the cable along the cable axis at a speed $25 \pm 3 \mathrm{~mm} / \mathrm{min}$. Measure the force when the discontinuity occurs.
Pass Criteria:	30.0 NMIN.

5. Vibration	
Reference Standard:	MIL-STD-202-201
Test Conditions:	Solder the receptacle connector to the test board, then mate plug connector, and place them on the vibrator. Then apply the following vibration. During the testing, run $100 \mathrm{~mA} D \mathrm{D}$ to check electrical discontinuity. Frequency: $10 \mathrm{~Hz} \rightarrow 55 \mathrm{~Hz} \rightarrow 10 \mathrm{~Hz} /$ approx. 1 min . Directions: 3 mutually perpendicular directions. Total Amplitude: 1.52 mm Sweep Duration: 2 hours for each direction, a total of 6 hours.
Pass Criteria:	Contact Resistance: Shall meet 4.1.1. Electrical Discontinuity: No electrical discontinuity greater than $1 \mu s$ shall occur. Appearance: No abnormality adversely affecting the performance shall occur.

6. Shock	
Reference Standard:	MIL-STD-202-213, Test Condition A.
Test Conditions:	Solder the receptacle connector to the test board, then mate plug connector, and place them on the shock machine. Then apply the following shock. MAX.G: 50G Duration: 11 msec Wave Form: Half Sinusoidal Directions: 6 Mutually Perpendicular Direction Cycle: 3 cycles Each Direction
Pass Criteria:	Contact Resistance: Shall meet 4.1.1. Electrical Discontinuity: No electrical discontinuity greater than $1 \mu \mathrm{~s}$ shall occur. Appearance: No abnormality adversely affecting the performance shall occur.

4.3. Environmental Performance

1. Thermal Shock	
Reference Standard:	MIL-STD-202-107, Test Condition A.
Test Conditions:	Solder the receptacle connector to the test board, then mate plug connector, and expose them to the following environment. Temperature: $218 \mathrm{KK}\left(-55{ }^{\circ} \mathrm{C}\right), 30 \mathrm{~min} . \rightarrow 358 \mathrm{~K}\left(85{ }^{\circ} \mathrm{C}\right), 30 \mathrm{~min}$. Cycle: 5 cycles 5 min.
Paxs Criteria:	Contact Resistance: Shall meet 4.1.1.

2. High Temperature Life	
Reference Standard:	MIL-STD-202-108, Test Condition B.
Test Conditions:	Solder the receptacle connector to the test board, then mate plug connector, and expose them to the following environment. Temperature: $358 \pm 2 \mathrm{~K}\left(85 \pm 2{ }^{\circ} \mathrm{C}\right)$ Duration: 250 hours
Pass Criteria:	Contact Resistance: Shall meet 4.1.1. Contact Retention Force: Shall meet 4.2.3. Appearance: No abnormality adversely affecting the performance shall occur.

3. Humidity (Steady	
Reference Standard:	MIL-STD-202-103, Test Condition A.
Test Conditions:	Solder the receptacle connector to the test board, then mate plug connector, and expose them to the following environment. Temperature: $313 \pm 2 \mathrm{~K}\left(40 \pm 2{ }^{\circ} \mathrm{C}\right)$ Humidity: $90 \sim 95 \%$ RH Duration: 240 hours
Pass Criteria:	Contact Resistance: Shall meet 4.1.1. Insulation Resistance: Shall meet 4.1.2. Dielectric Withstanding Voltage: Shall meet 4.1.3. Appearance: No abnormality adversely affecting the performance shall occur.

4. Humidity (Cycling)	
Reference Standard:	MIL-STD-202-106.
Test Conditions:	Solder the receptacle connector to the test board, then mate plug connector, and expose them to the following environment. Temperature: 298[263]~338K (25[-10]~65 ${ }^{\circ} \mathrm{C}$) Humidity: $90[80] \sim 100 \%$ RH Duration: 10 cycles (240 hours)
Pass Criteria:	Contact Resistance: Shall meet 4.1.1. Insulation Resistance: Shall meet 4.1.2. Dielectric withstanding Voltage: Shall meet 4.1.3. Appearance: No abnormality adversely affecting the performance shall occur.

5. Saltwater Spray	
Reference Standard:	MIL-STD-202-101, Test Condition B.
Test Conditions:	Solder the receptacle connector to the test board, then mate plug connector, and expose them to the following environment. Temperature: $308 \pm 2 \mathrm{~K}\left(35 \pm 2{ }^{\circ} \mathrm{C}\right)$ Durwation: Density: $5 \pm 1 \%$ hours
Pasy weight] Criteria:	Contact Resistance: Shall meet 4.1.1. Appearance: No abnormality adversely affecting the performance shall occur.

6. $\mathrm{H}_{2} \mathrm{~S}$ Gas	
Reference Standard:	-
Test Conditions:	Solder the receptacle connector to the test board, then mate plug connector, and expose them to the following environment. Temperature: $298 \pm 2 \mathrm{~K}\left(25 \pm 2{ }^{\circ} \mathrm{C}\right)$ Relative Humidity: $75 \pm 5 \%$ RH Gas: $\mathrm{H}_{2} \mathrm{~S} 10 \pm 1 \mathrm{ppm}$ Duration: 24 hours
Pass Criteria:	Contact Resistance: Shall meet 4.1.1. Appearance: No abnormality adversely affecting the performance shall occur.

4.4. Others

1. Solderability	
Reference Standard:	-
Test Conditions:	Immerse the contact soldering part to flux of RMA or R type for 5 to 10 seconds, then dip the part into the solder bath of $518 \pm 5 \mathrm{~K}$ $\left(245 \pm 5{ }^{\circ} \mathrm{C}\right)$ for 5 ± 0.5 seconds.
Pass Criteria:	More than 95% of the dipped surface shall be evenly wet.

2. Resistance to Soldering Heat

Reference Standard:

Test Conditions: Reflow Temperature: See Fig.2.
Cycle: 2

Fig. 2
Pass Criteria:
No deformation nor defect adversely affecting the performance occur.

3. Soldering Heat Resistance (Soldering Iron)

Reference Standard: -

Test Conditions:	Operating temperature: $613 \sim 633 \mathrm{~K}\left(350{ }^{\circ} \mathrm{C} \pm 10\right)$ Application Time of Soldering Iron: $5 \pm 1 \mathrm{sec}$. The Number of Times of Appliation:3 times
Pass Criteria:	No abnormality adversely affecting the performance shall not occur.

4.5 Test Sequence and Specimen Quantity

Table. 1 Test Sequence and Sample Quantity

Test Item	Group												
	A	B	C	D	E	F	G	H	J	K	L	M	N
Contact Resistance		2,6		1,3,5	1,3	1,3	1,5	1,5,7	1,3	1,3			
Dielectric Withstanding Voltage							2,6	2,8					
Insulation Resistance							3,7	3,9					
Temperature Rising	1												
Mating Force		1,5											
Unmating Force		3,7											
Durability		4						$\begin{gathered} \hline 4 \\ (10 y c \mathrm{cl}) \end{gathered}$					
Contact Retention Force			1,3										
Cable Retention Force		8											
Vibration				2									
Shock				4									
Thermal Shock					2								
High Temperature Life			2			2							
Humidity (Steady State)							4						
Humidity (Cycling)								6					
Saltwater Spray									2				
$\mathrm{H}_{2} \mathrm{~S}$ Gas										2			
Solderability											1		
Soldering Heat Resistance												1	
Differential Impedance													1
Specimen Quantity.	$\begin{gathered} 5 \\ \hline \text { pcs. } \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \hline \mathrm{pcs} \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \text { pcs } \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ \mathrm{pcs} \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \hline \text { pcs } \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \hline \text { pcs } \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \hline \text { pcs } \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ \mathrm{pcs} \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ \hline \text { pcs } \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ \hline \text { pcs } \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { pcs } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 10 \\ & \text { pcs } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5 \\ \mathrm{pcs} \\ \hline \end{gathered}$

※Numbers indicate test sequences.

5. Recommended Metal Mask

Refer to drawing for the recommended metal mask thickness and opening dimension.

6. Precautions for Handling Cable Connectors

Refer to instruction manual : HIM-09007 for the handling of FPL II Connector.

Confidential C

